- Edema, J. J. H., Buter, J., van Bolhuis, F., Meetsma, A., Kellogg, R. M., Kooijman, H. & Spek, A. L. (1993). *Inorg. Chim. Acta*, 207, 263–265.
- Edema, J. J. H., Hoogenraad, M., Kellogg, R. M., Kooijman, H. & Spek, A. L. (1993). J. Org. Chem. 58, 5282–5284.
- Edema, J. J. H., Hoogenraad, M., Schoonbeek, F. S., Kellogg, R. M., Kooijman, H. & Spek, A. L. (1993). Recl Trav. Chim. Pays-Bas, 112, 370–375.
- Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Mackay, A. L. (1984). Acta Cryst. A40, 165-166.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Spek, A. L. (1993). *HELENA. Program for Data Reduction*. Univ. of Utrecht, The Netherlands.

Acta Cryst. (1995). C51, 91-93

(3aS,3bR,6R,7aR)-2-Benzyl-1,2,3a,3b,4,7ahexahydro-6-phenyl-3,5-dioxa-2,6adiazacyclopenta[*a*]pentalen-7-one

Angèle Chiaroni, Abdallah Deyine, Dominique Griffard-Brunet, Nicole Langlois and Claude Riche

Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif sur Yvette CEDEX, France

(Received 23 March 1994; accepted 24 June 1994)

Abstract

The cycloaddition of *N*-benzylnitrone and the known α , β -unsaturated bicyclic lactam derived from (*S*)-pyroglutaminol and benzaldehyde leads to the tricyclic title compound, C₂₀H₂₀N₂O₃. The central ring is nearly planar while the adjacent *cis*-fused rings have envelope conformations.

Comment

Conveniently *N*-protected α,β -unsaturated pyrrolidones can act as good dipolarophiles in the 1,3-dipolar cycloaddition of nitrones. Thus, an adduct was obtained (in 64% isolated yield) through the cycloaddition of *N*-benzylnitrone and the known α,β -unsaturated bicyclic lactam derived from (*S*)-pyroglutaminol and benzaldehyde, (1) (Hanessian & Ratovelomanana, 1990; Hamada, Hara, Kawai, Kohno & Shioiri, 1991; Griffart-Brunet & Langlois, 1994). The regioselectivity generally observed in such cycloadditions (Tufariello, 1984; Carruthers, 1990) and steric considerations support the structure (2). This structure could not be proven easily by ¹H NMR owing to the absence of coupling between the adjacent protons H—C3a and H—C3b and the broadening of signals due to relatively slow inversion of the isoxazolidine N atom. Thus, the structure of compound (2) was resolved unambiguously by an X-ray diffraction analysis.

The general shape of the molecule is shown in Fig. 1. The ring junction between rings A and B is cis. The oxazolidine ring A adopts an envelope conformation with the atom N2 at 0.568 (3) Å from the mean plane of the four other atoms. Ring B is nearly planar exhibiting a half-chair conformation. The atom N6a is out of the lactam ring plane [the sum of the three bond angles is 343.5° and the distance of N6a to the plane of the three bonded atoms is 0.336 (2) Å]. The five-membered rings B and C appear cis-fused. Ring C exhibits an envelope conformation with atom C3b 0.477 (2) Å out of the mean plane of the four other atoms.

Fig. 1. The structure of compound (2) depicting the general shape of the molecule.

Experimental

Crvstal data

~	
$C_{20}H_{20}N_2O_3$	(
$M_r = 336.39$	
Orthorhombic	(
P212121	
a = 5.607 (2) Å	(
b = 10.954 (3) Å	
c = 27.452 (15) Å	
$V = 1686.1 (11) \text{ Å}^3$]
Z = 4	(
$D_r = 1.33 \text{ Mg m}^{-3}$	(

Cu $K\alpha$ radiation $\lambda = 1.5418$ Å Cell parameters from 25 reflections $\theta = 11.3-24.6^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 293 KPrism $0.65 \times 0.20 \times 0.15 \text{ mm}$ Colourless

Acta Crystallographica Section C ISSN 0108-2701 ©1995

$C_{20}H_{20}N_2O_3$

Data collection		N2-C1-C7a	105.7 (2)	C7a-C7-019	126.8 (2)
Nonius CAD-4 diffractor	$A = 67.76^{\circ}$	C1—N2—O3	101.6 (2)	CIC/aC3a	102.5 (2)
Nonius CAD-4 unnacioni-	$v_{\text{max}} = 07.70$	C1N2C12	110.9 (2)	CI - C/a - C/	113.8 (2)
eter	$h = 0 \rightarrow 0$	03—N2—C12	108.8 (2)	C3a-C/a-C/	105.6 (2)
$\theta/2\theta$ scans	$k = 0 \rightarrow 13$	N2	108.2(1)	N2-C12-C13	112.9 (2)
Absorption correction:	$l = 0 \rightarrow 32$	03C3aC3b	109.1 (2)	CI2-CI3-CI4	120.6 (2)
none	3 standard reflections	03C3aC7a	105.9 (2)	C12-C13-C18	120.7 (2)
		C3b—C3a—C7a	106.2 (2)	C14-C13-C18	118.6 (2)
1807 measured reflections	frequency: 166 min	C3a—C3b—C4	116.8 (2)	C13-C14-C15	121.6 (2)
1807 independent reflections	intensity variation: none	C3a—C3b—N6a	105.0 (2)	C14-C15-C16	119.8 (3)
1678 observed reflections	•	C4—C3b—N6a	100.4 (2)	C15C16C17	119.4 (3)
[I > 20 - (D]]		C3b-C4-O5	105.6 (2)	C16-C17-C18	121.2 (3)
$[I > 3.0\sigma(I)]$		C405C6	110.5 (2)	C13-C18-C17	119.4 (2)
		O5C6N6a	104.5 (2)	C6-C20-C21	120.1 (2)
Refinement		O5C6C20	109.7 (2)	C6C20C25	120.7 (2)
		N6a—C6—C20	113.2 (2)	C21—C20—C25	119.1 (2)
Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.06$	C3b—N6a—C6	108.6 (2)	C20-C21-C22	120.6 (2)
R = 0.037	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm A}^{-3}$	C3b-N6a-C7	112.4 (2)	C21-C22-C23	119.5 (2)
wR = 0.052	$\Delta \rho_{\rm min} = -0.17 {\rm e} {\rm \AA}^{-3}$	C6N6aC7	122.5 (2)	C22—C23—C24	120.4 (3)
S = 1.04	Extinction correction: none	N6a-C7-C7a	108.1 (2)	C23—C24—C25	120.2 (3)
5 = 1.04	Extinction correction: none	N6aC7019	125.1 (2)	C20-C25-C24	120.2 (2)
1676 reflections	Atomic scattering factors	C1-N2-O3-C3a	-39.1(2)	N6a-C3b-C4-05	29.4 (2)
306 parameters	from International Tables	N2-03-C3a-C7a	24.0 (2)	C3b-C4-O5-C6	-17.5 (2)
All H-atom parameters	for X-ray Crystallography	03-C3a-C7a-C1	0.5(2)	C4-05-C6-N6a	-2.2(2)
refined	(1974, Vol. IV, Table	C3a-C7a-C1-N2	-24.1 (2)	O5-C6-N6a-C3b	22.3 (2)
$w = 1/[\sigma^2(F) \pm 0.0023F^2]$	2 2B)	C7a-C1-N2-O3	38.4 (2)	C6N6aC3bC4	-31.7 (2)
W = 1/[0 (T) + 0.0025T]	2.20)	C7a-C3a-C3b-N6a	5.6 (2)	C1-N2-C12-C13	170.2 (3)
		C3a-C3b-N6a-C7	-14.6 (2)	O3-N2-C12-C13	59.2 (2)
Table 1. Fractional atomic	coordinates and equivalent	C3b—N6a—C7—C7a	17.5 (2)	N2-C12-C13-C14	99.6 (2)
· · · · ·		N6a—C7—C7a—C3a	-12.9 (2)	O5-C6-C20-C25	27.4 (2)

isotropic displacement parameters (Å²)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	Z	U_{eq}
Cl	-0.0821 (5)	0.7085 (2)	0.1921 (1)	0.054 (2)
N2	-0.1867 (4)	0.8283 (2)	0.1820(1)	0.046 (2)
O3	-0.1092 (3)	0.8494(1)	0.1324(1)	0.045(1)
C3a	0.1328 (4)	0.8051 (2)	0.1277 (1)	0.039 (2)
СЗь	0.1581 (4)	0.7377 (2)	0.0793 (1)	0.042 (2)
C4	0.3916 (6)	0.7551 (3)	0.0517(1)	0.060 (2)
O5	0.4444 (4)	0.6401 (2)	0.0309(1)	0.077 (2)
C6	0.3096 (4)	0.5456 (2)	0.0546(1)	0.050 (2)
N6a	0.1772 (3)	0.6085(2)	0.0925(1)	0.043 (1)
C7	0.2241 (4)	0.5920(2)	0.1411(1)	0.048 (2)
C7a	0.1642 (4)	0.7094 (2)	0.1674(1)	0.044 (2)
C12	-0.0813 (5)	0.9227 (2)	0.2136(1)	0.047 (2)
C13	-0.1510 (4)	1.0499 (2)	0.1990(1)	0.041 (2)
C14	0.0023 (4)	1.1216(2)	0.1719(1)	0.050 (2)
C15	-0.0533 (6)	1.2413 (2)	0.1601(1)	0.059 (2)
C16	-0.2676 (6)	1.2906 (2)	0.1751(1)	0.064 (3)
C17	-0.4231(5)	1.2202 (3)	0.2019(1)	0.067 (3)
C18	-0.3679 (4)	1.1000 (3)	0.2142(1)	0.055 (2)
019	0.2974 (5)	0.4984 (2)	0.1592(1)	0.075 (2)
C20	0.1508 (4)	0.4826 (2)	0.0179(1)	0.039(1)
C21	-0.0563 (4)	0.4249 (2)	0.0330(1)	0.046 (2)
C22	-0.2026(5)	0.3657 (2)	-0.0004(1)	0.058 (2)
C23	-0.1398 (6)	0.3644 (3)	-0.0491 (1)	0.065 (2)
C24	0.0664 (6)	0.4204 (3)	-0.0644(1)	0.062 (2)
C25	0.2134 (5)	0.4785 (2)	-0.0312(1)	0.052 (2)

Table 2. Selected geometric parameters (Å, °)

C1-N2	1.464 (3)	C7019	1.211 (3)
C1C7a	1.538 (4)	C12—C13	1.501 (3)
N203	1.446 (2)	C13C14	1.383 (3)
N2-C12	1.474 (3)	C13—C18	1.398 (3)
O3—C3a	1.447 (3)	C14—C15	1.386 (4)
СЗа—СЗЬ	1.527 (2)	C15-C16	1.381 (4)
C3a—C7a	1.523 (3)	C16C17	1.377 (4)
C3b—C4	1.525 (4)	C17—C18	1.395 (4)
C3b—N6a	1.464 (3)	C20-C21	1.386 (3)
C405	1.415 (4)	C20-C25	1.392 (3)
O5—C6	1.436 (3)	C21C22	1.390 (3)
C6N6a	1.453 (3)	C22C23	1.382 (4)
C6-C20	1.511 (3)	C23-C24	1.375 (4)
N6a-C7	1.373 (3)	C24C25	1.385 (4)
C7C7a	1.512 (3)		

The isotropic temperature factors of the H atoms were set equal to $1.10U_{eq}$ of the bonded atom.

N6a-C6-C20-C21

-38.3 (2)

4.0 (2)

Data collection: CAD-4 diffractometer software (Enraf-Nonius, 1987). Data reduction: NONIUS (Riche, 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: R3M (Riche, 1983); ORTEP (Johnson, 1965). Software used to prepare material for publication: ACTACIF (Riche, 1992).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1120). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

C7-C7a-C3a-C3b

- Carruthers, W. (1990). Cycloaddition Reactions in Organic Synthesis, ch. 6, pp. 298-313. Oxford: Pergamon Press.
- Enraf-Nonius (1987). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.
- Griffart-Brunet, D. & Langlois, N. (1994). Tetrahedron Lett. 35, 119-122.
- Hamada, Y., Hara, O., Kawai, A., Kohno, Y. & Shioiri, T. (1991). Tetrahedron, 47, 8635-8652.
- Hanessian, S. & Ratovelomanana, V. (1990). Synlett, pp. 501-503.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Riche, C. (1983). R3M. Institut de Chimie des Substances Naturelles du CNRS, Gif sur Yvette, France.
- Riche, C. (1989). NONIUS. Program for Data Reduction for Nonius CAD-4 Diffractometer. Institut de Chimie des Substances Naturelles du CNRS, Gif sur Yvette, France.
- Riche, C. (1992). ACTACIF. Institut de Chimie des Substances Naturelles du CNRS, Gif sur Yvette, France.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Tufariello, J. J. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 2, edited by A. Padwa, ch. 9, pp. 83-168. New York: John Wiley.

The perspective view of the structure of (5S,SS)-7methyl-8-p-toluenesulfinyl-1,6-dioxaspiro[4.5]dec-7-ene reveals the S absolute configuration of the spirokelatic atom, C11.

Acta Cryst. (1995). C51, 93-94

(5S,SS)-7-Methyl-8-p-toluenesulfinyl-1,6dioxaspiro[4.5]dec-7-ene

R. RETOUX

Laboratoire des Fluorures - URA 449 Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX. France

P. HAYES AND C. MAIGNAN

Laborai dire de Synthèse Organique - URA 482 Faculté des Sciences. Université du Maine. 72017 Le Mans CEDEX, France

(Received 23 March 1994; accepted 24 June 1994)

Abstract

The structure determination of C₁₆H₂₀O₃S based on Xray single-crystal diffraction confirms the S absolute configuration of the spiroketalic C atom.

Comment

The intermolecular hetero-Diels-Alder reaction between α,β -unsaturated carbonyl compounds and vinyl ethers has been applied extensively to the synthesis of natural products (Boger & Weinzed, 1987). In connection with our interest in using chiral sulfoxides in asymmetric syntheses, we sought new strategies for constructing spiroketal skeletons by heterocycloaddition using an enantiopure sulfinyl-hetero diene. (+)-(S)-3p-Toluenesulfinyl-3-buten-2-one (Bonfand, Gosselin & Maignan, 1992) reacted smoothly with sensitive 2methylene tetrahydrofuran yielding 1:1 diastereomeric dioxaspiro adducts. These spiroketals were completely separated by liquid chromatography on silica gel. In order to obtain information on the absolute configuration of the spirokelatic C atom, we obtained single crystals of one diastereomer, (I), with a view to determining its structure by X-ray diffraction.

©1995 International Union of Crystallography Printed in Great Britain - all rights reserved

displacement parameters of the H atoms have been divided by ten. Displacement ellipsoids are plotted at the 50% probability level.

Experimental

Recrystallization of the title compound from ether after liquid chromatography gave small colourless platelets. Suitable crystals for X-ray analysis were very difficult to find. Firelly, a parallelepipedic crystal was chosen and its quality was tested using Laue photographs.

Crystal data	
$C_{16}H_{20}O_{3}S$ $M_{r} = 292.37$ Orthorhombic $P2_{1}2_{1}2_{1}$ $a = 7.9680 (14) \text{ Å}$ $b = 8.1104 (11) \text{ Å}$ $c = 23.761 (3) \text{ Å}$ $V = 1535.5 (4) \text{ Å}^{3}$ $7 = 4$	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 32 reflections $\theta = 12.6-15.9^{\circ}$ $\mu = 0.205$ mm ⁻¹ T = 293 (2) K Plate $0.741 \times 0.471 \times 0.201$ mm
$D_x = 1.265 \text{ Mg m}^{-3}$	Colourless
Data collection	
Stoe Siemens AED-2 dif- fractometer $\omega - 2\theta$ scans Absorption correction: none 3115 measured reflections 2626 independent reflections 2268 observed reflections $[I > 2\sigma(I)]$	$R_{int} = 0.0602$ $\theta_{max} = 25^{\circ}$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -28 \rightarrow 28$ 3 standard reflections frequency: 60 min intensity variation: 8%
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0514$ $wR(F^2) = 0.1337$ S = 1.0462619 reflections

Extinction correction: SHELXL93 (Sheldrick. 1993) Extinction coefficient: 0.0069 (39)

Acta Crystallographica Section C ISSN 0108-2701 ©1995